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Abstract. Algorithms proposed for solving high-dimensional optimization

problems with no derivative information frequently encounter the “curse of
dimensionality,” becoming ineffective as the dimension of the parameter space

grows. One feature of a subclass of such problems that are effectively low-

dimensional is that only a few parameters (or combinations thereof) are im-
portant for the optimization and must be explored in detail. Knowing these

parameters/combinations in advance would greatly simplify the problem and

its solution. We propose the data-driven construction of an effective (coarse-
grained, “trend”) optimizer, based on data obtained from ensembles of brief

simulation bursts with an “inner” optimization algorithm, that has the po-
tential to accelerate the exploration of the parameter space. The trajectories

of this “effective optimizer” quickly become attracted onto a slow manifold

parameterized by the few relevant parameter combinations. We obtain the
parameterization of this low-dimensional, effective optimization manifold on
the fly using data mining/manifold learning techniques on the results of sim-

ulation (inner optimizer iteration) burst ensembles and exploit it locally to
“jump” forward along this manifold. As a result, we can bias the exploration

of the parameter space towards the few, important directions and, through this

“wrapper algorithm,” speed up the convergence of traditional optimization al-
gorithms.
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1. Introduction. The design of complex engineering systems often leads to high-
dimensional optimization problems with computationally expensive objective func-
tion evaluations, often given in the form of a (computational) black-box. In such
cases the derivative information may be unavailable or impractical to obtain in
closed form, too expensive to compute numerically, or unreliable to estimate if the
objective function is noisy. These difficulties may render derivative-based optimiza-
tion methods impractical for such problems, and so-called derivative-free methods
must be used.

The first such derivative-free algorithms appeared quite early: the direct search
method [23] and the Nelder-Mead algorithm [41]. Since then a variety of algorithms
have been proposed, including trust-region methods [9]; deterministic global algo-
rithms [24, 27]; algorithms utilizing surrogate models [3, 26]; and stochastic global
methods such as genetic algorithms [22], simulated annealing [31] and particle swarm
optimization [14]. A broader overview of the aforementioned methods along with
additional ones used for high-dimensional problems can be found at [10, 46, 49].

Many of these methods have been applied successfully to low-dimensional prob-
lems where derivative information is not available; once the dimension of the pa-
rameter space grows, however, they run into the “curse of dimensionality,” where
the required sampling of the parameter space grows exponentially or the conver-
gence becomes too slow. There is case-dependent evidence that, for certain classes of
problems, out of the vast parameter space only a few parameters or combinations of
parameters suffice to describe most of the variance in the objective function values,
with the rest having little effect [35, 39, 40, 47]. It is observations of this nature that
we aim to exploit in our proposed method, borrowing additional ideas from the field
of fast/slow (singularly perturbed) dynamical systems and data mining/manifold
learning techniques.

It has been observed that complex dynamical systems such as molecular dynam-
ics (MD) simulations or complex reaction network dynamics may possess a low-
dimensional, attracting, “slow” manifold. The dynamics of the system after being
initialized at a random state quickly approach the slow manifold and then evolve
“along it” (close to it). A reduced model of the system in terms of the slow variables
parameterizing this manifold would greatly simplify the understanding of the sys-
tem’s behavior (and its computation). However, such a model is often unavailable
in closed form. In previous work [30] we have shown how short “bursts” of a mi-
croscopic simulator can evolve the system close to and then “along” an underlying
slow manifold. Essentially, after the short burst is attracted to the slow manifold,
we can observe the evolution on a restricted set of coarse-grained observables that
parameterize the slow manifold when these coarse variables are known a priori. We
can then perform a “large” time step by extrapolating the few macroscopic variable
values and lifting the new state back into the full space to initialize a new set of
computation bursts for the microscopic simulator. This can achieve significant ac-
celeration of the effective complex system dynamics. If the macroscopic variables
are not known, then a reduced description of the manifold can be derived on the fly
by using data-driven dimensionality reduction techniques, which uncover the few
intrinsic variables that are adequate to describe a high-dimensional data set locally.

The high-dimensional optimization problem can be treated in the same vein by
making two assumptions: (a) we have an “inner optimizer”, analogous to a mi-
croscopic simulator, that samples the parameter space and produces a series of
“pseudo”-Langevin trajectories, (b) we postulate that there exists an attracting,
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slow manifold which can be parameterized in terms of a few parameters or combi-
nations thereof, and the inner optimizer is quickly attracted to it. In the following
sections we will show that the trajectory produced by a specific version of simulated
annealing (SA)—our “inner optimizer”—at constant temperature can be described
by an effective Stochastic Differential Equation (SDE) whose drift contains infor-
mation about the local gradient of the objective function. To be precise, since we
do not vary the temperature as the optimization progresses, our “inner optimizer”
is a random walk Metropolis-Hastings (RWMH) algorithm. Running short bursts
of this constant-temperature SA, we create “pseudo” dynamics that can be thought
of as the (approximate) dynamics of an actual dynamical system. After initializ-
ing at a random point in parameter space, the algorithm is quickly attracted to the
low-dimensional manifold, and by applying either linear or nonlinear dimensionality
reduction techniques we can obtain a useful local parameterization of this manifold.
We can estimate the drift of the effective SDE using established parametric infer-
ence methods and thus estimate the local effective gradient of the objective function
[48]. This can be used subsequently in an algorithm such as gradient descent in a
reduced parameter space. The new point is lifted back to full space, using local Prin-
cipal Component Analysis or geometric harmonics [7], and the entire procedure is
repeated, leading to an acceleration of the overall optimization.

2. Methods.

2.1. Inner optimization loop. The Langevin equation was introduced as a sto-
chastic global optimization method shortly after the first appearance of simulated
annealing [18, 19]. It is a gradient descent method with the addition of a “thermal”
noise that allows the trajectories to escape local minima and thus enhance their
ability to explore the parameter space. However, it may become impractical for the
problems we are considering since, as we discussed above, the gradient information
is explicitly unavailable. The equation reads

dxt = −∇f(xt) dt+
√

2T dWt, (1)

where xt ∈ Rn, f is the objective function, Wt is an n-dimensional standard Brow-
nian motion, and T is the temperature parameter. It can be shown that under
an appropriate temperature schedule T (t), the algorithm converges weakly to the
global minimum [18]. The equilibrium distribution is the Gibbs distribution, with
density

π(x; T ) =
exp

[
− f(x)T

]
∫
Rn exp

[
− f(y)T

]
dy
.

The simulated annealing algorithm admits the same equilibrium distribution at
an equal T and can be viewed as an adaptation of the Metropolis-Hastings al-
gorithm [38] with time dependent acceptance probability due to the temperature
schedule. The acceptance probability is given by

a = min

(
1, exp

[
−
(
f(y)− f(x)

)
T

])
,

where x is the current point and y is the new trial point that comes from a symmetric
proposal density g(y|x). Hence, better points are always accepted and worse points
are accepted with probability 0 < a < 1, which is greater at higher temperatures T .
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Consider now the simple, one-dimensional case at constant temperature T (a
RWMH protocol) using proposal density g(y|x) = N (x, 2T δt) and the acceptance
probability defined above. It can be shown [13, 15] that, at the limit of small
time steps δt or large temperatures T , the density of accepted points after one step
converges to a normal distribution N (x− f ′(x) δt, 2T δt), which corresponds to the
density of a new point using an Euler-Maruyama discretization of the Langevin
equation [36]. Figure 1 shows the density of sample points after one step and after
100 steps using both algorithms. The two distributions visually almost coincide.

Using the above procedure we can obtain “pseudo” trajectories in the parameter
space that are analogous to the trajectories produced by the Langevin equation and
contain information about an effective gradient of the objective function without
explicitly computing it.
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(a) After one step (t = 0.001).
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(b) After 100 steps (t = 0.1).

Figure 1. Evolution in time of the probability density of current
points using either the Langevin equation or SA at constant T .
The objective function is f(x) = 0.5x2; 104 realizations are used
with starting point x = 1, T = 0.5; and the time step is dt = 10−3.

2.2. Dimensionality reduction. In our previous discussion on dynamical sys-
tems, we mentioned that the long-term dynamics of the full system can often be
usefully restricted to the dynamics of a few slow variables. These variables can be a
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collection of macroscopic variables that are available from our intimate knowledge
of the system, or they can be estimated “on the fly” using dimension reduction
techniques. Such techniques can be applied to large, high-dimensional data sets to
uncover the few intrinsic variables that are sufficient to describe most of the system’s
long-term behavior. We will use the latter approach in our method, since it can be
quite challenging to identify beforehand the few parameters that are important to
the optimization.

One of the most common methods for dimension reduction is Principal Com-
ponent Analysis (PCA) [25]. It tries to identify a hyperplane that best fits the
data by finding an orthogonal basis, where the first vector points in the direction of
maximum variance in the data set and all subsequent vectors maximize variance in
orthogonal directions. The basis vectors are called Principal Components, and they
can be found by an eigenvalue decomposition of the covariance matrix of the data
set after it has been centered. If the eigenvalues are sorted and the relationship
λ1 > λ2 > · · · > λk � λk+1 > · · · > λn holds (n is the dimension of the original
space), then there is a gap in the eigenvalue spectrum and we can reduce the dimen-
sionality of our data set by projecting it onto the first k principal components. PCA
is a well-documented technique, but its major limitation is that it can parameterize
only linear manifolds.

Nonlinear manifold learning techniques are required if the data lie on a curved
manifold. One such method is Diffusion Maps (DMaps) [8]. For a data set of size
m, the algorithm starts by constructing a weight matrix W ∈ Rm×m:

Wij = exp

(
−‖xi − xj‖2

ε2

)
, i, j = 1, . . . ,m,

where xi, xj ∈ Rn, ‖·‖ is an appropriate norm, and ε is a characteristic distance
between data points. Next, we construct the diagonal matrix D ∈ Rm×m with
Dii =

∑
jWij and compute W̃ = D−αWD−α, where 0 ≤ α ≤ 1 is a normalization

parameter. Then, we construct the diagonal matrix D̃ ∈ Rm×m with D̃ii =
∑
j W̃ij

and compute the row-stochastic matrix K = D̃−1W̃ . The matrix K is the transition
probability matrix of a Markov chain defined on the data set, whose states are the
individual data points.

The eigenvectors ψ0, ψ1, . . . , ψm−1 of the matrix K approximate the eigenfunc-
tions of the Laplace-Beltrami operator on the sampled manifold and thus can be
used to parameterize the manifold [6]. Since K is row-stochastic, the first eigen-
vector ψ0 is trivial: all ones. The subsequent eigenvectors are called diffusion co-
ordinates and have corresponding eigenvalues λ1, λ2, · · · , λm−1. The original data
points are mapped to their diffusion coordinates as

x 7→
(
λτ1ψ1(x), . . . , λτm−1ψm−1(x)

)
,

where ψi(x) ∈ R represents the entry of eigenvector ψi corresponding to the point
x from the original data. In the following sections we take τ = 0. The distance
between two mapped points is called diffusion distance, and it represents the sim-
ilarity between two points in the original space. If two points are nearby in the
diffusion space using a Euclidean metric, it implies that there are multiple short
paths to transition from one point to the other in the original space. Similarly to
PCA, if there is a spectral gap we can map our original data set to k “important”
eigenvectors. However, attention must be paid to the fact that some eigenvectors
may be higher harmonics of previously discovered ones [11]. The nonlinear manifold



516 POZHARSKIY, WICHROWSKI, DUNCAN, PAVLIOTIS AND KEVREKIDIS

is parameterized by the few eigenvectors that correspond to the largest eigenvalues
and that are not themselves such higher harmonics. These diffusion coordinates
are the important intrinsic variables that parameterize the nonlinear manifold and
indicate its dimensionality.

We illustrate DMaps by applying it to a “Swiss roll” data set. This is a three-
dimensional data set, but only two variables are sufficient to describe every point:
the height and the arclength along the roll. Figure 2a shows the data set colored by
the first non-trivial eigenvector that parameterizes the arclength, while Figure 2b
shows the data set colored by the second non-trivial eigenvector that parameterizes
the height. Figure 2c shows the data set “unrolled” in the diffusion map space.

In the case that the original data set comes from independent stochastic pro-
cesses, as in our time series simulator, but we observe it through some nonlinear
transformation y = f(x), we can retrieve the original manifold using Mahalanobis
distances [12, 50]. It can be shown that if xi, xj are two data points in the original
space and yi, yj are their nonlinear transformations, then

‖xi − xj‖2 =
1

2
(yi − yj)>

[
(JJ>)−1(yi) + (JJ>)−1(yj)

]
(yi − yj) +O

(
‖yi − yj‖4

)
,

where J is the Jacobian matrix of the transformation. In practice, the matrix JJ>

is approximated by a covariance matrix which is estimated by running several short
bursts of our simulator around each data point. Since the manifold has a lower-
dimensionality than the observed space, the covariance matrix will be rank deficient
and a pseudo-inverse must be used to compute the Mahalanobis distances.

2.3. Parameter inference. We mentioned above that time series from the SA
algorithm can be considered as corresponding to those of an effective stochastic dif-
ferential equation. Hence, an essential component of our algorithm is the estimation
of drift and diffusion coefficients of a stochastic process from local path data. As-
sume the one-dimensional stochastic process dx(t) = h(x(t)) dt+ σ(x(t)) dW , with
W a standard Brownian motion. The coefficients can be estimated either from their
statistical definitions [20], i.e.,

h
(
x(t)

)
= lim
τ→0

〈
x(t+ τ)− x(t)

〉
τ

,

σ2
(
x(t)

)
= lim
τ→0

〈(
x(t+ τ)− x(t)

)2〉
τ

,

(2)

or using the Generalized Method of Moments (GMM) [4, 21], where moment condi-
tions can be easily derived from an Euler-Maruyama discretization of the stochastic
process. The above methods are more fitting if the stochastic process is realized as
multiple short trajectories starting from the same initial conditions. On the other
hand, if we are given a single, long trajectory then maximum likelihood methods [1, 2]
are more suitable.

The maximum likelihood estimator (MLE) for the drift coefficients is known to
be asymptotically unbiased [44], i.e., as the length of the observed path increases,
the MLE converges to the true values of the coefficients that appear in the drift.
This is no longer true in the presence of a multiscale structure, i.e., when we want
to estimate parameters in a stochastic coarse-grained model, given observations of
the slow variable from the full dynamics. Indeed, it was shown rigorously in [43, 45]
that in this case the MLE becomes asymptotically biased and that subsampling at
an appropriate rate, between the two characteristic time scales of the dynamics, is
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Figure 2. Applying Diffusion Maps to the Swiss roll data set.
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needed in order to estimate accurately the parameters in the coarse-grained model.
This is particularly relevant for us, since the optimization/estimation methodology
is based on the assumption of the existence of a reduced model that describes
accurately the system we are interested in. See, for example, the ODE driven by a
sped-up Lorenz ’63 ODE that is studied in Section 3.4.

3. Results & discussion.

3.1. An illustration: One-dimensional “effective” optimization. Before delv-
ing into the complete algorithm, which involves estimation of effective gradients in
the low-dimensional embedding, we proceed with a simpler example where the ob-
jective function is two-dimensional but the optimization process can be effectively
one-dimensional. Consider an objective function given by

f(x, y) = C exp
[
−25

(
x2 + y2

)2
+ 216(x2 + y2)− 0.05

√
(x− 2)2 + y2

]
, (3)

where C is a proportionality constant selected to normalize the maximum objective
value to unity. Since (3) arises as the posterior density of a Bayesian parameter
estimation, our algorithm in reality minimizes −f , but we present the results from
the perspective of maximizing f .

Plotting the objective (cf. Figure 3) reveals that f ≈ 0 on the entire plane
except for a thin region near the circle x2 + y2 = 4, where the function exhibits
a sharply peaked “ridge” of greater function values. If we attempt to maximize
f via Simulated Annealing (or, at constant temperature, RWMH) the algorithm
will quickly be attracted to the ridge and then slowly proceed along it towards the
maximum. Trial points far away from the ridge are usually worse than the current
accepted point and are highly likely to be rejected. Hence, the accepted points lie
on an essentially one-dimensional curve in the parameter space.

We can apply Diffusion Maps to this data, and the first diffusion coordinate will
parameterize the curve. Once we have obtained the one-dimensional embedding,
we can extrapolate in the direction that the objective function increases. The last
step involves returning from the diffusion space back to the original parameter
space. This procedure is called “lifting”, and a variety of methods are available,
such as Laplacian Pyramids [12], Geometric Harmonics [7, 34] and Radial Basis
Functions [5]. We will use geometric harmonics in the present work. After obtaining
the projected point back in parameter space, we perform another short run of SA
from that point and repeat the procedure. To summarize the algorithm:

1. Pick an initial point, possibly near the “ridge” of the objective function.
2. Run a short burst of Simulated Annealing until a prescribed number of points

has been accepted (1000 here).
3. Discard any outliers that may be far away from the ridge.
4. Apply Diffusion Maps to the remaining two-dimensional data set and obtain

a nonlinear embedding. The embedding is one-dimensional and the diffusion
coordinate can be thought of as corresponding to the arclength along the
ridge.

5. In the diffusion space, project to a new point that is in the direction that
improves the objective function.

6. Lift the new point back to full space via geometric harmonics. The resulting
point is expected to be close to the ridge, but even if it is not, the new SA
run will quickly be attracted to it.

7. Return to Step 2 and repeat the procedure.
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The results for this illustrative example are shown in Figure 3. Each short burst
of SA is shown as a “cloud” of red points. The lifted points are shown in yellow, and
we can see that geometric harmonics perform well in this case, as the lifted points
are still close to the ridge. The maximum of the function is depicted by the purple
diamond. Additionally, a single run of SA using the same total number of function
evaluations was performed (in green). Figure 4 compares the running maximum
objective value achieved by the two approaches. It is clear that, for this simple
illustration, SA/RWMH combined with Diffusion Maps approaches the maximum
substatially more quickly. Building on the body of ideas developed in [16, 17] as
well as [51, 52], the combination of an “inner optimizer” with data mining of its
local results, followed by taking larger “outer” optimization steps in the identified
reduced space, has the potential to significantly accelerate the overall computational
optimization.

Figure 3. One complete run of the algorithm that approaches the
global maximum. Six total “coarse iterations” (shown in red) were
performed. In addition, a single run of SA using the same number
of function evaluations is shown in green. Our algorithm visibly
approaches the maximum much faster.

3.2. Coefficient estimation of the effective SDE. In this section we will demon-
strate how one can estimate the theoretically expected drift and diffusion coefficients
after the trajectories of a stochastic process have been transformed using DMaps.
As we mentioned before, these coefficients correspond to an effective gradient and
will provide us with an approximation of the “correct” ascent (resp. descent) di-
rection along which to optimize (maximize, resp. minimize) in the low-dimensional
space. We begin with a two-dimensional SDE, analogous to the Langevin equation:

dx = µ(x, y) dt+
√

2T dW1

dy = ν(x, y) dt+
√

2T dW2,
(4)
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Figure 4. A comparison of the evolving maximum objective value
for both methods. SA combined with DMaps needs only a fraction
of the total function evaluations compared to simple SA.

where [W1 W2]T = W are independent Brownian motions. Assume now that the
data in the original space x, y are transformed by being observed through the leading
Diffusion Map coordinates, and the trajectories are now written in terms of these
diffusion coordinates ψ1(x, y) and ψ2(x, y). In order to rewrite our system of SDEs
in terms of the new variables, we apply the multidimensional Itô’s lemma [42, 44],
e.g., for ψ1 we have:

dψ1 =

(
(∇ψ1)>

[
µ
ν

]
+

1

2
Tr
[
Σ>(Hψ1)Σ

])
dt+ (∇ψ1)>Σ dW

=

[(
∂ψ1

∂x
µ+

∂ψ1

∂y
ν

)
+ T

(
∂2ψ1

∂x2
+
∂2ψ1

∂y2

)]
dt

+
√

2T

√(
∂ψ1

∂x

)2

+

(
∂ψ1

∂y

)2

dW̃1,

where Σ =
√

2T I is the covariance matrix from (4), Hψ1 is the Hessian matrix of

second partial derivatives of ψ1, and W̃1 is a new Brownian motion.
In order to simplify the estimation, we set up a two-dimensional grid in the x, y

space. The partial derivatives that are required for the theoretical computation of
coefficients are approximated numerically at the grid points using centered differ-
ences. From every grid point, N trajectories are simulated via SA for a specified
time ∆t, which is also the time step in the estimation computed via (2). The
simulation time step between successive points on a trajectory is δt = 0.1 ∆t.

The data set that is then “passed” to the DMaps algorithm, in order to find the
new embedding, consists of the cloud of final points from each trajectory, the initial
grid points, and all points where the partial derivatives are estimated. Afterwards,
we have a new grid in the ψ1, ψ2 space, with every partial derivative estimated on
this grid. We can assume that in a small neighborhood of every grid point the
partial derivatives of the diffusion coordinates are approximately constant. Given
that, we perform a separate estimation at each grid point of the following system
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of SDEs:

dψ1 = θ1 dt+ θ3 dW̃1

dψ2 = θ2 dt+ θ4 dW̃2,

where θ1 and θ3 correspond to

θ1 =

[(
∂ψ1

∂x
µ+

∂ψ1

∂y
ν

)
+ T

(
∂2ψ1

∂x2
+
∂2ψ1

∂y2

)]

θ3 =
√

2T

√(
∂ψ1

∂x

)2

+

(
∂ψ1

∂y

)2

,

(5)

and similarly for θ2 and θ4. Thus, we obtain values for each θi, i = 1, 2, 3, 4 at every
grid point and fit a polynomial along the grid, e.g., using a quadratic fit:

θ1(ψ1, ψ2) ≈ p00 + p10ψ1 + p01ψ2 + p20ψ
2
1 + p11ψ1ψ2 + p02ψ

2
2 .

If the grid is local (small) enough and the bursts are contained within the grid for
the most part, we can assume that the objective function could be approximated
locally by a linear surface which has a constant gradient, i.e.:

µ(x, y) = µ0

ν(x, y) = ν0.

For our illustrative example we will use the function f(x, y) = x+ 2y, which has
a constant gradient, on an orthogonal grid along the coordinate axes. We use an
8 × 10 grid with limits [0, 1.5] × [0, 1.2], and we use N = 150 trajectories at every
grid point, each run for ∆t = 0.01. The time step of the simulation is δt = 10−3.

To illustrate that the estimation is accurate even if we observe the process
through a nonlinear transformation, we transform a region of the (x, y) space
that contains the trajectories and map it onto a spherical surface, obtaining a new
(x, y, z) space. We apply Diffusion Maps with Euclidean distances to the original
data set and Diffusion Maps with Mahalanobis distances to the transformed data
set. Figure 5a shows the original data set colored by the two diffusion coordinates
and the new embedding. Of course, since the original data set is two-dimensional, no
dimensionality reduction is achieved in this case. Figure 5b shows the transformed
data set colored by the diffusion coordinates. In this case, Mahalanobis distances
enable us to retrieve the original, orthogonal, two-dimensional embedding.

After estimation, some of the drifts and diffusivities along the grid approach zero.
In order to avoid these degeneracies, we discard the points where this occurs and
fit the coefficients θi to the rest of the grid. Figures 6 and 7 show the results for
drift coefficients θ1, θ2. Similar results are obtained for diffusion coefficients θ3, θ4.

3.3. Optimization on a cylinder. Having shown that we can estimate the correct
parameters in the Diffusion Map space whether we observe the original manifold
or some invertible transformation of it, we now apply our algorithm to a three-
dimensional objective function with an attracting, slow, two-dimensional manifold.

In a cylindrical coordinate scheme (i.e., x(r, θ, z) = r cos θ, y(r, θ, z) = r sin θ,
z(r, θ, z) = z), we define:

f(r, θ, z) =
k1
2

(r −R)2 + h(θ) +
k2
2
z2,

where k1, k2 > 0 determine to what extent trajectories are attracted to the circle
defined by the intersection of the plane z = 0 with the cylinder having radius R and
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Figure 5. Diffusion maps applied to (A) the original 2D data
with Euclidean distances, and (B) the transformed data with Ma-
halanobis distances. In both cases, the inherent dimensionality is
recovered in the first two eigenvectors, as the coloring of the data
by the leading Diffusion Map coordinates corresponding to these
two eigenvectors show.

axis z. We used parameter values (k1, k2, R) = (104, 20, 5/π) and implemented f
programmatically so as to accept Cartesian coordinates and internally convert to
cylindrical. The function

h(θ) = −1.2 + 3.4 cos2 (θ)− 0.59 cos (θ)− 1.1 sin (θ)

determines an asymmetric double well potential with a local minimum close to
θ = −π/2 and a global minimum around θ = π/2. Any trajectory away from
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Figure 6. Estimation of the first drift coefficient θ1. “Theoreti-
cal” are obtained numerically from (5), “Euclidean” via DMaps on
the original data, and “Mahalanobis” from DMaps on the trans-
formed data. The last subplot shows results from Euclidean DMaps
on transformed data, which, as expected, yields incorrect estimates.

the cylinder is quickly attracted to it, and then the search of the parameter space
proceeds along the cylinder surface. The new algorithm builds on the previously
presented one, but now also includes parameter estimation in Diffusion Map space.

Algorithm.

1. Initialize a local grid around a starting point and simulate ensembles of short
trajectories starting at every grid point.

2. Apply DMaps to the data set to obtain the low-dimensional embedding.
3. Estimate SDE coefficients on the grid points.
4. Fit a polynomial to the coefficients along the grid.
5. Integrate the system of ODEs dψ1 = θ1(ψ1, ψ2) dt, dψ2 = θ2(ψ1, ψ2) dt for-

ward in time. This is analogous to using a gradient descent algorithm.
6. Lift the resulting point to full space and use it as a new starting point.
7. Repeat until the estimated coefficients in Diffusion Map space approach zero.

One must of course pay attention to the length of the integration step, to avoid
extrapolating too far away from the grid in 3D space, since the coefficients are known
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Figure 7. Estimation of the second drift coefficient θ2. The sub-
plots are analogous to those in Figure 6.

there only locally. In general, we observed that linear fits perform better and follow
the negative gradient direction at larger distances from the grid. Figure 8 shows
two snapshots of the algorithm run as it approaches the minimum near θ = π/2.

It is important to note that the above procedure is a simple first attempt at
a general outline of how to perform optimization in the reduced space. Many
possible improvements can be made to reduce redundant computations and make
the algorithm more efficient for practical applications. The first issue that should be
addressed is how many short runs of the optimizer are required to obtain sufficient
information about an effective gradient. The grid setup in the previous example
is potentially redundant, and estimation at only a few points may be sufficient
to obtain a good ascent/descent direction. Another question is how far along the
manifold one can usefully project. A line search method [29] could be implemented
here, though one should keep in mind that the effective gradient is estimated locally
and that, the farther away we extend along the manifold, the less accurate the lifting
procedure becomes. We are systematically exploring these considerations for future
publication.

3.4. Fast chaotic noise. Our estimation procedure can also be applied in cases
where the underlying stochasticity of the system is not due to a Wiener process but
arises from deterministic chaos. Consider an ODE driven by one of the components
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Figure 8. Coarse-grained (two-dimensional) optimization on a
cylindrical surface in three dimensions. One complete run of the al-
gorithm, illustrating the short bursts of trajectories and new points
after being lifted by geometric harmonics. Observe that, although
the lifting does not perfectly locate the cylinder, the burst trajecto-
ries are quickly attracted back to it. The second plot is a top-down
view of the first.
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of the Lorenz system:

dx

dt
= A(x− x3) +

λ

ε
y2,

dy1
dt

=
10

ε2
(y2 − y1),

dy2
dt

=
1

ε2
(28y1 − y2 − y1y3),

dy3
dt

=
1

ε2
(y1y2 −

8

3
y3).

(6)

It can be shown that the approximate dynamics for the slow variable are given
by the following SDE [28, 37]:

dx = A(x− x3) dt+
√
σ dW.

In the following simulations we use parameter values of A = 1, λ = 2/45, and

ε =
√

0.001. Assuming Diffusion Maps yields a diffusion coordinate ψ(x) that is
one-to-one with the slow variable x, we can write an SDE for it using Itô’s Lemma:

dψ =

(
A(x− x3)

dψ

dx
+
σ

2

d2ψ

dx2

)
dt+

√
σ
dψ

dx
dW. (7)

The simulation is set up as follows (cf. [32, 33]): initially, the system is run
long enough from initial conditions (1, 1, 1, 1)> so that it converges onto the Lorenz
attractor (t ≈ 0.1). The end point of this initial simulation of the Lorenz system
(y0) will be used subsequently as our starting point for our short bursts. The
starting points for x are taken as equally-spaced points in the range [−1.5, 1.5];
we chose to use 20 such points. In order to achieve faster separation of trajectories
starting close to the same x value, we perturb the starting point for each short
burst. The actual initial conditions are given as

xic = x0 + 0.01
xspacing

2
z,

yic = y0 + z,

where z are standard normal variables and xspacing is the distance between starting
points for x before the perturbation.

At each of our 20 starting points, 500 short trajectories are simulated. The
system is integrated with time step δt = 10−3 for a duration ∆t = 0.03. Figure 9
shows the trajectories of both the fast and slow variables for one such burst. We
see that the duration ∆t = 0.03 lies between the timescales of the fast (Lorenz) and
slow (effective x) dynamics, so we avoid biasing our estimators for the coarse-grained
model parameters.

As before, we assume that the drift and diffusion coefficients are approximately
constant at each starting point and estimate the following SDE at each starting
point via GMM:

dx = θ1 dt+ θ2 dW.

Afterwards, we fit a polynomial of an appropriate degree to the estimated coeffi-
cients and retrieve the coefficients Â ≈ 0.9534 and σ̂ ≈ 0.117, values that are close
to the ones reported in [32]. The entire data set consists of the starting points, end
points of each short burst, and points that are used to compute the derivatives of
the diffusion coordinate. In this particular case, its dimension is R10060×4.
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Figure 9. Simulation of a short trajectory initialized at perturbed
initial conditions (xic,yic).

Applying regular DMaps to this data set yields a parameterization of the Lorenz
attractor. In order to extract the slow variable, we apply DMaps using Maha-
lanobis distances. The local covariances of each data point are computed using 100
short simulations with duration dtcov = 10−4. The pseudo-inverse of the covariance
matrix is computed using a singular value decomposition (SVD):

C† =

d∑
m=1

s−1m vmv
>
m, (8)

where s are the singular values and v the right-singular vectors. In this case, we
use d = n = 4, since we need the last singular value that corresponds to the slow
variable to obtain the correct embedding. Using this setup, the first non-trivial
diffusion coordinate parameterizes the slow variable x, as seen in Figure 10.

While in theory the derivatives of the diffusion coordinate could be computed
using central differences, the parameterization of x is quite noisy and the estimated
derivatives can be quite inaccurate. To ameliorate this difficulty, we used smoothing
splines to fit a curve to the data and estimated the derivatives from the splines. The
data and fit curve are shown in Figure 10.

Using the new data set in Diffusion Map space we again assume constant local
drift and diffusivity at each starting point and use GMM to fit the following SDE:

dψ = ξ1 dt+ ξ2 dW.

This estimate is compared to (7) either using the estimates Â and σ̂:

dψ =

(
Â(x− x3)

dψ

dx
+
σ̂

2

d2ψ

dx2

)
dt+

√
σ̂
dψ

dx
dW, (9)

or directly using the estimates θ1 and θ2:

dψ =

(
θ1
dψ

dx
+
θ22
2

d2ψ

dx2

)
dt+ θ2

dψ

dx
dW.

The results are shown in Figure 11 and Figure 12.
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Figure 10. The first diffusion coordinate parameterizes x.
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Figure 11. Estimation of the drift coefficient in diffusion map space.
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To demonstrate the dimension reduction from a higher dimensional space, we
can transform the slow variable x by embedding it onto a curve in the plane (see
Figure 13).

The entire data set is now five-dimensional, and we can again apply DMaps
with Mahalanobis distances as before. We again compute the pseudo-inverse using
SVD as in (8), but now we use d = n − 1 = 4 and discard the last singular value,
which corresponds to the transverse direction on the semicircle. Figure 14 shows
the embedding using the original data set as well as the transformed data set. The
embeddings are almost identical. Using ψtr(x), we can estimate again drift and
diffusion coefficients as above. The results are shown in Figure 15 and Figure 16.

The same method can be applied in the case of multiplicative noise:

dx

dt
= A(x− x3) +

λ

ε
(1 + νx2)y2,

dy1
dt

=
10

ε2
(y2 − y1),

dy2
dt

=
1

ε2
(28y1 − y2 − y1y3),

dy3
dt

=
1

ε2
(y1y2 −

8

3
y3).

The approximate dynamics for the slow variable in this case are given by [32]:

dx = (Ax+Bx3 + Cx5) dt+
√
σa + σbx2 + σcx4 dW.

The constants from (6) and the simulation parameters remain unchanged, with the
exception of ν = 1 and ∆t = 0.01. Applying Itô’s Lemma again, we obtain

dψ =

[
(Ax+Bx3 + Cx5)

dψ

dx
+
σa + σbx

2 + σcx
4

2

d2ψ

dx2

]
dt

+
√
σa + σbx2 + σcx4

dψ

dx
dW.

If we estimate the coefficients of the polynomials in the drift and diffusion terms
using the data in the original space, we can also estimate these coefficients in diffu-
sion map space using an equation analogous to (9):

dψ =

[
(Âx+ B̂x3 + Ĉx5)

dψ

dx
+
σ̂a + σ̂bx

2 + σ̂cx
4

2

d2ψ

dx2

]
dt

+
√
σ̂a + σ̂bx2 + σ̂cx4

dψ

dx
dW.

The other two estimation methods remain the same, i.e., either using θ1 and θ2
calculated at each starting point or calculating ξ1 and ξ2 at each starting point.
The results are shown in Figure 17 and Figure 18.

4. Conclusions. We have confirmed that, at the limit of small time steps and
large temperatures, trajectories produced by the Simulated Annealing/Random
Walk Metropolis Hastings algorithm are analogous to those that result from the
Langevin equation, a global, stochastic optimization algorithm. We use SA as our
“inner” optimizer that produces ensembles of brief simulation bursts, which contain
information about an effective gradient of the objective function. Using dimension
reduction techniques such as PCA or, in the case of nonlinear manifolds, Diffu-
sion Maps, we can obtain the parameterization of the underlying low-dimensional
manifold.

As our first example, we show that a two-dimensional, Bayesian model is effec-
tively one-dimensional and DMaps can retrieve the important parameter (a sort of
“reaction coordinate”) for the optimization. Combining SA with DMaps achieves
considerably faster approach to the maximum, compared with the simple SA alone.
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Figure 12. Estimation of the diffusion coefficient in diffusion map space.
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Figure 13. Nonlinear transformation of the slow variable x onto
a semicircle in the plane.
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Figure 15. Estimation of the drift coefficient in Diffusion Map space.
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Figure 16. Estimation of the diffusion coefficient in Diffusion
Map space.
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Figure 17. Estimation of the drift coefficient in diffusion map space.
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Starting from a two-dimensional SDE that corresponds to a Langevin equation
for an objective function with two parameters, we derived the corresponding SDE
in terms of the diffusion coordinates and approximated numerically the theoretical
drift and diffusion coefficients. We then estimated the same drift and diffusion co-
efficients using parameter inference on the data set that came from the application
of DMaps on the original trajectories. Additionally, we can transform the original
data set through a nonlinear transformation by mapping it onto a portion of the
surface of a sphere and applying DMaps on the transformed data set using Maha-
lanobis distances. In both cases the estimated parameters are closely comparable
to the theoretical ones.

For illustration purposes, we constructed a three-dimensional objective function
that has a strongly attracting, two-dimensional manifold. This work constitutes a
simple “proof of concept” acceleration demonstration for the classes of optimiza-
tion problems we consider. It is also an illustration of the tools required to perform
scientific computations (here, gradient descent) in a latent variable space, a space
parameterized by on-the-fly processing of the data produced by the “inner opti-
mizer.” Fast implementations of the techniques (like Geometric Harmonics) for
translating back-and-forth between the original space, in which the problem was
given, and the latent space, where the coarse optimization steps are taken, are
crucial for the usefulness of the approach. The true benefits of this approach and
its potential should be explored by applying it to truly high-dimensional problems
where other methods slow down considerably. This is the subject of current work.
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Figure 18. Estimation of the diffusion coefficient in diffusion map space.
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